Last updated: 2024-06-17

Checks: 7 0

Knit directory: PPP/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20240521) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 564acc4. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/.RData
    Ignored:    analysis/.Rhistory
    Ignored:    code/.DS_Store
    Ignored:    code/TieDIE-devel/.DS_Store
    Ignored:    code/TieDIE-devel/examples/.DS_Store
    Ignored:    code/TieDIE-devel/examples/hnsc/.DS_Store
    Ignored:    code/TieDIE-tiedie2/.DS_Store
    Ignored:    code/TieDIE-tiedie2/examples/.DS_Store
    Ignored:    data/.DS_Store
    Ignored:    data/Phosphoproteome_BCM_GENCODE_v34_harmonized_v1/.DS_Store
    Ignored:    data/Phosphoproteome_BCM_GENCODE_v34_harmonized_v1/README/.DS_Store
    Ignored:    data/Proteome_BCM_GENCODE_v34_harmonized_v1/.DS_Store
    Ignored:    data/Proteome_BCM_GENCODE_v34_harmonized_v1/README/.DS_Store
    Ignored:    output/.DS_Store
    Ignored:    output/expr/.DS_Store
    Ignored:    output/pho/.DS_Store
    Ignored:    output/regulon/.DS_Store
    Ignored:    temp/.DS_Store

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Differentially_Phosphorylated_Site.Rmd) and HTML (docs/Differentially_Phosphorylated_Site.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 9d7bb61 Zhen Zuo 2024-06-16 .
html e55118d Zhen Zuo 2024-06-16 Build site.
html 3477290 Zhen Zuo 2024-06-16 update workflow
Rmd 8c84adb Zhen Zuo 2024-06-16 .

Load packages

library(viper)
library(aracne.networks)
library(dplyr)
library(plyr)
library(stringr)
library(Biobase)
library(EnsDb.Hsapiens.v86)
dir.create("output/DPS/",showWarnings = FALSE)
dir.create("output/pho/",showWarnings = FALSE)

Define functions

read_phos <- function(file_name) {
    expr <- read.table(file_name, header = TRUE, sep = "\t", row.names = 1,
        as.is = TRUE)
    expr[is.na(expr)] <- 0
    n_0 <- count_zeros_in_rows(as.matrix(expr))
    # Remove features with more 20% zero/missing values
    expr <- expr[n_0 >= ncol(expr)/5,]
    # Split rownames by |
    meta <- split_and_save_df(rownames(expr))
    
    colnames(meta) <- c("ENSG", "ENSP", "S", "Seq", "Index")
    meta$ENSG <- sub("\\..*$", "", meta$ENSG)
    geneID <- ensembldb::select(EnsDb.Hsapiens.v86, keys = meta$ENSG, keytype = "GENEID",
        columns = c("SYMBOL", "UNIPROTID", "GENEID"))
    meta$UNIPROTID <- plyr::mapvalues(meta$ENSG, from = geneID$GENEID,
        to = geneID$UNIPROTID, warn_missing = FALSE)
    meta$SYMBOL <- plyr::mapvalues(meta$ENSG, from = geneID$GENEID, to = geneID$SYMBOL,
        warn_missing = FALSE)
    

    # Remove duplicated indexs
    index <- paste(meta$SYMBOL, meta$S, meta$Seq, sep = "_")
    binary_unique_index <- !duplicated(index)
    
    print(table(binary_unique_index))
    
    meta <- meta[binary_unique_index, ]

    expr <- expr[binary_unique_index, ]
    rownames(expr) <- index[binary_unique_index]
    
    rownames(meta) <- rownames(expr)
    return(list(expr, meta))
}

calculate_log_fold_change_and_pvalue <- function(data_matrix, group, adjust_method = "BH") {
  # Check if the length of the group variable matches the number of columns in the data matrix
  if (length(group) != ncol(data_matrix)) {
    stop("The length of the group variable must match the number of columns in the data matrix.")
  }
  # Ensure the group variable contains only "normal" and "tumor"
  if (!all(group %in% c("normal", "tumor"))) {
    stop("The group variable must only contain 'normal' and 'tumor' values.")
  }
  
  # Calculate the mean for each row in the tumor and normal groups
  mean_tumor <- rowMeans(data_matrix[, group == "tumor"], na.rm = TRUE)
  mean_normal <- rowMeans(data_matrix[, group == "normal"], na.rm = TRUE)
  
  # Calculate the fold change
  fold_change <- mean_tumor - mean_normal
  
  # Initialize a vector to store p-values
  p_values <- numeric(nrow(data_matrix))
  
  # Perform t-test for each row
  for (i in 1:nrow(data_matrix)) {
    normal_values <- data_matrix[i, group == "normal"]
    tumor_values <- data_matrix[i, group == "tumor"]
    wilcox_test_result <- wilcox.test(normal_values, tumor_values, paired = FALSE)
    p_values[i] <- wilcox_test_result$p.value
  }
  
  # Adjust the p-values
  adjusted_p_values <- p.adjust(p_values, method = adjust_method)
  
  # Create a data frame with fold change, p-values, and adjusted p-values
  results <- data.frame(
    Fold_Change = fold_change,
    P_Value = p_values,
    Adjusted_P_Value = adjusted_p_values
  )
  # Return the results data frame
  return(results)
}

count_zeros_in_rows <- function(mat) {
  # Ensure the input is a matrix
  if (!is.matrix(mat)) {
    stop("Input must be a matrix.")
  }
  
  # Use rowSums to count zeros in each row
  zero_counts <- rowSums(mat != 0)
  
  return(zero_counts)
}

split_and_save_df <- function(string_list) {
  # Load necessary library
  library(dplyr)
  
  # Create an empty list to store the split strings
  split_strings <- list()
  
  # Loop over each string in the list
  for (str in string_list) {
    # Split the string by the pipe character
    split_str <- strsplit(str, "\\|")[[1]]
    # Append the split string to the list
    split_strings <- append(split_strings, list(split_str))
  }
  
  # Convert the list of split strings to a dataframe
  df <- do.call(rbind, split_strings) %>% as.data.frame()
  
  return(df)
}

Extract and process phosphopeptides data

df <- read.csv("data/omics_regulon_pairs.csv")
labels <- c("kirc", "kirc", "hnsc", "hnsc", "lusc", "lusc", "luad", "luad",
    "paad", "paad")
for (i in c(1, 3, 5, 7, 9)) {
    normal <- read_phos(df$phos[i])
    expr_n <- normal[[1]]
    meta_n <- normal[[2]]

    tumor <- read_phos(df$phos[i+1])
    expr_t <- tumor[[1]]
    meta_t <- tumor[[2]]

    common_terms <- intersect(rownames(expr_t), rownames(expr_n))

    expr_t[!is.finite(as.matrix(expr_t))] <- 0
    expr_n[!is.finite(as.matrix(expr_n))] <- 0

    expr <- cbind(expr_t[common_terms, ], expr_n[common_terms, ])

    saveRDS(expr_n[common_terms, ], paste("output/pho/count_matrix_", labels[i], "_normal.RDS",
        sep = ""))
    saveRDS(expr_t[common_terms, ], paste("output/pho/count_matrix_", labels[i], "_tumor.RDS",
        sep = ""))

    meta <- meta_n[common_terms, ]

    fc <- calculate_log_fold_change_and_pvalue(data_matrix = as.matrix(expr),
        group = c(rep("tumor", ncol(expr_t)), rep("normal", ncol(expr_n))))
    fc <- cbind(meta, fc)
    write.csv(fc, paste("output/DPS/", labels[i],
        "_fc.csv", sep = ""), row.names = F)
    fc <- fc[fc$Adjusted_P_Value < 0.05, ]

    network <- read.csv("data/KSA_gold_standard.csv")
    network <- network[network$seq_15 %in% fc$Seq, ]
    unique(network$Gene.name)
    write.csv(fc[fc$Seq %in% network$seq_15, ], paste("output/DPS/", labels[i],
        "_fc_0.05_kinases.csv", sep = ""), row.names = F)
    write.csv(network, paste("output/DPS/", labels[i], "_KSA_gold_standard_0.05.csv",
        sep = ""), row.names = F)
}
binary_unique_index
FALSE  TRUE 
   50 27196 
binary_unique_index
FALSE  TRUE 
   49 26209 
binary_unique_index
FALSE  TRUE 
  131 31678 
binary_unique_index
FALSE  TRUE 
  124 31842 
binary_unique_index
FALSE  TRUE 
   65 35327 
binary_unique_index
FALSE  TRUE 
   65 35237 
binary_unique_index
FALSE  TRUE 
   55 31068 
binary_unique_index
FALSE  TRUE 
   57 31424 
binary_unique_index
FALSE  TRUE 
   60 28456 
binary_unique_index
FALSE  TRUE 
   61 28351 

sessionInfo()
R version 4.4.0 (2024-04-24)
Platform: aarch64-apple-darwin20
Running under: macOS Sonoma 14.5

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] EnsDb.Hsapiens.v86_2.99.0 ensembldb_2.28.0         
 [3] AnnotationFilter_1.28.0   GenomicFeatures_1.56.0   
 [5] AnnotationDbi_1.66.0      GenomicRanges_1.56.0     
 [7] GenomeInfoDb_1.40.0       IRanges_2.38.0           
 [9] S4Vectors_0.42.0          stringr_1.5.1            
[11] plyr_1.8.9                dplyr_1.1.4              
[13] aracne.networks_1.30.0    viper_1.38.0             
[15] Biobase_2.64.0            BiocGenerics_0.50.0      
[17] workflowr_1.7.1          

loaded via a namespace (and not attached):
  [1] bitops_1.0-7                DBI_1.2.3                  
  [3] rlang_1.1.4                 magrittr_2.0.3             
  [5] git2r_0.33.0                matrixStats_1.3.0          
  [7] e1071_1.7-14                compiler_4.4.0             
  [9] RSQLite_2.3.7               getPass_0.2-4              
 [11] png_0.1-8                   callr_3.7.6                
 [13] vctrs_0.6.5                 ProtGenerics_1.36.0        
 [15] pkgconfig_2.0.3             crayon_1.5.2               
 [17] fastmap_1.2.0               XVector_0.44.0             
 [19] utf8_1.2.4                  Rsamtools_2.20.0           
 [21] promises_1.3.0              rmarkdown_2.27             
 [23] UCSC.utils_1.0.0            ps_1.7.6                   
 [25] purrr_1.0.2                 bit_4.0.5                  
 [27] xfun_0.44                   zlibbioc_1.50.0            
 [29] cachem_1.1.0                jsonlite_1.8.8             
 [31] blob_1.2.4                  later_1.3.2                
 [33] DelayedArray_0.30.1         BiocParallel_1.38.0        
 [35] parallel_4.4.0              R6_2.5.1                   
 [37] bslib_0.7.0                 stringi_1.8.4              
 [39] rtracklayer_1.64.0          jquerylib_0.1.4            
 [41] SummarizedExperiment_1.34.0 Rcpp_1.0.12                
 [43] knitr_1.47                  mixtools_2.0.0             
 [45] httpuv_1.6.15               Matrix_1.7-0               
 [47] splines_4.4.0               tidyselect_1.2.1           
 [49] abind_1.4-5                 rstudioapi_0.16.0          
 [51] yaml_2.3.8                  codetools_0.2-20           
 [53] curl_5.2.1                  processx_3.8.4             
 [55] lattice_0.22-6              tibble_3.2.1               
 [57] KEGGREST_1.44.0             evaluate_0.24.0            
 [59] survival_3.7-0              proxy_0.4-27               
 [61] kernlab_0.9-32              Biostrings_2.72.1          
 [63] pillar_1.9.0                MatrixGenerics_1.16.0      
 [65] whisker_0.4.1               KernSmooth_2.23-24         
 [67] plotly_4.10.4               generics_0.1.3             
 [69] RCurl_1.98-1.14             rprojroot_2.0.4            
 [71] ggplot2_3.5.1               munsell_0.5.1              
 [73] scales_1.3.0                class_7.3-22               
 [75] glue_1.7.0                  lazyeval_0.2.2             
 [77] tools_4.4.0                 BiocIO_1.14.0              
 [79] data.table_1.15.4           GenomicAlignments_1.40.0   
 [81] XML_3.99-0.16.1             fs_1.6.4                   
 [83] grid_4.4.0                  tidyr_1.3.1                
 [85] colorspace_2.1-0            nlme_3.1-165               
 [87] GenomeInfoDbData_1.2.12     restfulr_0.0.15            
 [89] cli_3.6.2                   fansi_1.0.6                
 [91] S4Arrays_1.4.1              segmented_2.1-0            
 [93] viridisLite_0.4.2           gtable_0.3.5               
 [95] sass_0.4.9                  digest_0.6.35              
 [97] SparseArray_1.4.8           rjson_0.2.21               
 [99] htmlwidgets_1.6.4           memoise_2.0.1              
[101] htmltools_0.5.8.1           lifecycle_1.0.4            
[103] httr_1.4.7                  bit64_4.0.5                
[105] MASS_7.3-61