Last updated: 2024-06-17
Checks: 7 0
Knit directory: PPP/
This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20240521)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 564acc4. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .RData
Ignored: .Rhistory
Ignored: analysis/.DS_Store
Ignored: analysis/.RData
Ignored: analysis/.Rhistory
Ignored: code/.DS_Store
Ignored: code/TieDIE-devel/.DS_Store
Ignored: code/TieDIE-devel/examples/.DS_Store
Ignored: code/TieDIE-devel/examples/hnsc/.DS_Store
Ignored: code/TieDIE-tiedie2/.DS_Store
Ignored: code/TieDIE-tiedie2/examples/.DS_Store
Ignored: data/.DS_Store
Ignored: data/Phosphoproteome_BCM_GENCODE_v34_harmonized_v1/.DS_Store
Ignored: data/Phosphoproteome_BCM_GENCODE_v34_harmonized_v1/README/.DS_Store
Ignored: data/Proteome_BCM_GENCODE_v34_harmonized_v1/.DS_Store
Ignored: data/Proteome_BCM_GENCODE_v34_harmonized_v1/README/.DS_Store
Ignored: output/.DS_Store
Ignored: output/expr/.DS_Store
Ignored: output/pho/.DS_Store
Ignored: output/regulon/.DS_Store
Ignored: temp/.DS_Store
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/Differentially_Gene.Rmd
)
and HTML (docs/Differentially_Gene.html
) files. If you’ve
configured a remote Git repository (see ?wflow_git_remote
),
click on the hyperlinks in the table below to view the files as they
were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | 9d7bb61 | Zhen Zuo | 2024-06-16 | . |
html | e55118d | Zhen Zuo | 2024-06-16 | Build site. |
html | 3477290 | Zhen Zuo | 2024-06-16 | update workflow |
Rmd | 8c84adb | Zhen Zuo | 2024-06-16 | . |
library(viper)
library(aracne.networks)
library(dplyr)
library(plyr)
library(stringr)
library(Biobase)
library(EnsDb.Hsapiens.v86)
dir.create("output/DEG/",showWarnings = FALSE)
dir.create("output/expr/",showWarnings = FALSE)
read_exp <- function(file_name) {
expr <- read.table(file_name, header = TRUE, sep = "\t", row.names = 1,
as.is = TRUE)
expr[is.na(expr)] <- 0
n_0 <- count_zeros_in_rows(as.matrix(expr))
# Remove features with more 20% zero/missing values
expr <- expr[n_0 >= ncol(expr)/5, ]
# Split rownames by |
meta <- data.frame(rownames(expr))
colnames(meta) <- c("ENSG")
meta$ENSG <- sub("\\..*$", "", meta$ENSG)
geneID <- ensembldb::select(EnsDb.Hsapiens.v86, keys = meta$ENSG, keytype = "GENEID",
columns = c("SYMBOL", "UNIPROTID", "GENEID"))
meta$UNIPROTID <- plyr::mapvalues(meta$ENSG, from = geneID$GENEID,
to = geneID$UNIPROTID, warn_missing = FALSE)
meta$SYMBOL <- plyr::mapvalues(meta$ENSG, from = geneID$GENEID, to = geneID$SYMBOL,
warn_missing = FALSE)
# Remove duplicated indexs
binary_unique_index <- (!duplicated(meta$SYMBOL)) & (!is.na(meta$SYMBOL) &
(!sapply(meta$SYMBOL, function(x) startsWith(x, "ENSG"))))
print(table(binary_unique_index))
meta <- meta[binary_unique_index, ]
expr <- expr[binary_unique_index, ]
rownames(expr) <- meta$SYMBOL
rownames(meta) <- rownames(expr)
return(list(expr, meta))
}
calculate_log_fold_change_and_pvalue <- function(data_matrix, group, adjust_method = "BH") {
# Check if the length of the group variable matches the number of
# columns in the data matrix
if (length(group) != ncol(data_matrix)) {
stop("The length of the group variable must match the number of columns in the data matrix.")
}
# Ensure the group variable contains only 'normal' and 'tumor'
if (!all(group %in% c("normal", "tumor"))) {
stop("The group variable must only contain 'normal' and 'tumor' values.")
}
# Calculate the mean for each row in the tumor and normal groups
mean_tumor <- rowMeans(data_matrix[, group == "tumor"], na.rm = TRUE)
mean_normal <- rowMeans(data_matrix[, group == "normal"], na.rm = TRUE)
# Calculate the fold change
fold_change <- mean_tumor - mean_normal
# Initialize a vector to store p-values
p_values <- numeric(nrow(data_matrix))
# Perform t-test for each row
for (i in 1:nrow(data_matrix)) {
normal_values <- data_matrix[i, group == "normal"]
tumor_values <- data_matrix[i, group == "tumor"]
wilcox_test_result <- wilcox.test(normal_values, tumor_values,
paired = FALSE)
p_values[i] <- wilcox_test_result$p.value
}
# Adjust the p-values
adjusted_p_values <- p.adjust(p_values, method = adjust_method)
# Create a data frame with fold change, p-values, and adjusted
# p-values
results <- data.frame(Fold_Change = fold_change, P_Value = p_values,
Adjusted_P_Value = adjusted_p_values)
# Return the results data frame
return(results)
}
count_zeros_in_rows <- function(mat) {
# Ensure the input is a matrix
if (!is.matrix(mat)) {
stop("Input must be a matrix.")
}
# Use rowSums to count zeros in each row
zero_counts <- rowSums(mat != 0)
return(zero_counts)
}
df <- read.csv("data/omics_regulon_pairs.csv")
labels <- c("kirc", "kirc", "hnsc", "hnsc", "lusc", "lusc", "luad", "luad",
"paad", "paad")
for (i in c(1, 3, 5, 7, 9)) {
normal <- read_exp(df$RNA[i])
expr_n <- normal[[1]]
meta_n <- normal[[2]]
tumor <- read_exp(df$RNA[i+1])
expr_t <- tumor[[1]]
meta_t <- tumor[[2]]
common_terms <- intersect(rownames(expr_t), rownames(expr_n))
expr_t[!is.finite(as.matrix(expr_t))] <- 0
expr_n[!is.finite(as.matrix(expr_n))] <- 0
expr <- cbind(expr_t[common_terms, ], expr_n[common_terms, ])
saveRDS(expr_n[common_terms, ], paste("output/expr/count_matrix_", labels[i], "_normal.RDS",
sep = ""))
saveRDS(expr_t[common_terms, ], paste("output/expr/count_matrix_", labels[i], "_tumor.RDS",
sep = ""))
meta <- meta_n[common_terms, ]
fc <- calculate_log_fold_change_and_pvalue(data_matrix = as.matrix(expr),
group = c(rep("tumor", ncol(expr_t)), rep("normal", ncol(expr_n))))
fc <- cbind(meta, fc)
write.csv(fc, paste("output/DEG/", labels[i],
"_fc.csv", sep = ""), row.names = F)
fc <- fc[fc$Adjusted_P_Value < 0.05, ]
write.csv(fc, paste("output/DEG/", labels[i],
"_fc_0.05.csv", sep = ""), row.names = F)
}
binary_unique_index
FALSE TRUE
2782 39778
binary_unique_index
FALSE TRUE
2790 39468
binary_unique_index
FALSE TRUE
2781 39771
binary_unique_index
FALSE TRUE
2920 40572
binary_unique_index
FALSE TRUE
2791 39829
binary_unique_index
FALSE TRUE
2929 40903
binary_unique_index
FALSE TRUE
2788 39628
binary_unique_index
FALSE TRUE
2864 40400
binary_unique_index
FALSE TRUE
2926 40861
binary_unique_index
FALSE TRUE
2857 40341
sessionInfo()
R version 4.4.0 (2024-04-24)
Platform: aarch64-apple-darwin20
Running under: macOS Sonoma 14.5
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
time zone: America/New_York
tzcode source: internal
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] EnsDb.Hsapiens.v86_2.99.0 ensembldb_2.28.0
[3] AnnotationFilter_1.28.0 GenomicFeatures_1.56.0
[5] AnnotationDbi_1.66.0 GenomicRanges_1.56.0
[7] GenomeInfoDb_1.40.0 IRanges_2.38.0
[9] S4Vectors_0.42.0 stringr_1.5.1
[11] plyr_1.8.9 dplyr_1.1.4
[13] aracne.networks_1.30.0 viper_1.38.0
[15] Biobase_2.64.0 BiocGenerics_0.50.0
[17] workflowr_1.7.1
loaded via a namespace (and not attached):
[1] bitops_1.0-7 DBI_1.2.3
[3] rlang_1.1.4 magrittr_2.0.3
[5] git2r_0.33.0 matrixStats_1.3.0
[7] e1071_1.7-14 compiler_4.4.0
[9] RSQLite_2.3.7 getPass_0.2-4
[11] png_0.1-8 callr_3.7.6
[13] vctrs_0.6.5 ProtGenerics_1.36.0
[15] pkgconfig_2.0.3 crayon_1.5.2
[17] fastmap_1.2.0 XVector_0.44.0
[19] utf8_1.2.4 Rsamtools_2.20.0
[21] promises_1.3.0 rmarkdown_2.27
[23] UCSC.utils_1.0.0 ps_1.7.6
[25] purrr_1.0.2 bit_4.0.5
[27] xfun_0.44 zlibbioc_1.50.0
[29] cachem_1.1.0 jsonlite_1.8.8
[31] blob_1.2.4 later_1.3.2
[33] DelayedArray_0.30.1 BiocParallel_1.38.0
[35] parallel_4.4.0 R6_2.5.1
[37] bslib_0.7.0 stringi_1.8.4
[39] rtracklayer_1.64.0 jquerylib_0.1.4
[41] SummarizedExperiment_1.34.0 Rcpp_1.0.12
[43] knitr_1.47 mixtools_2.0.0
[45] httpuv_1.6.15 Matrix_1.7-0
[47] splines_4.4.0 tidyselect_1.2.1
[49] abind_1.4-5 rstudioapi_0.16.0
[51] yaml_2.3.8 codetools_0.2-20
[53] curl_5.2.1 processx_3.8.4
[55] lattice_0.22-6 tibble_3.2.1
[57] KEGGREST_1.44.0 evaluate_0.24.0
[59] survival_3.7-0 proxy_0.4-27
[61] kernlab_0.9-32 Biostrings_2.72.1
[63] pillar_1.9.0 MatrixGenerics_1.16.0
[65] whisker_0.4.1 KernSmooth_2.23-24
[67] plotly_4.10.4 generics_0.1.3
[69] RCurl_1.98-1.14 rprojroot_2.0.4
[71] ggplot2_3.5.1 munsell_0.5.1
[73] scales_1.3.0 class_7.3-22
[75] glue_1.7.0 lazyeval_0.2.2
[77] tools_4.4.0 BiocIO_1.14.0
[79] data.table_1.15.4 GenomicAlignments_1.40.0
[81] XML_3.99-0.16.1 fs_1.6.4
[83] grid_4.4.0 tidyr_1.3.1
[85] colorspace_2.1-0 nlme_3.1-165
[87] GenomeInfoDbData_1.2.12 restfulr_0.0.15
[89] cli_3.6.2 fansi_1.0.6
[91] S4Arrays_1.4.1 segmented_2.1-0
[93] viridisLite_0.4.2 gtable_0.3.5
[95] sass_0.4.9 digest_0.6.35
[97] SparseArray_1.4.8 rjson_0.2.21
[99] htmlwidgets_1.6.4 memoise_2.0.1
[101] htmltools_0.5.8.1 lifecycle_1.0.4
[103] httr_1.4.7 bit64_4.0.5
[105] MASS_7.3-61